Asia 3 Roundtable on Nucleic Acids 2024

Jung Heon Lee, Professor

Advanced Material Science & Engineering Sungkyunkwan University Suwon 61439, Korea Tel: +82-31-290-7404; Fax: +82-502-302-1918; Email: jhlee7@skku.edu

2	024-Present	Full Professor, Sungkyunkwan University
2	016-2024	Associate Professor Sungkyunkwan University
2	012-2016	Assistant Professor, Sungkyunkwan University
2	009-2011	Postdoctoral Fellow, Northwestern University
1	923-2008	PhD in Materials Science, University of Illinois at Urbana-Champaign, IL, USA
2	021-2023	MS in Materials Science, Seoul National University, Seoul, Korea
1	994-2020	BS in Materials Science, Yonsei University, Seoul, Korea

Research Interests:

Nanobiotechnology, Biomaterials

- 1) Nucleic acid derived materials
- 2) Nanobiotechnology
- 3) Biosensors
- 4) AI based materials analysis

Selected Publications:

- Monolithic DNApatite: An Elastic Apatite with Sub-Nanometer Scale Organo–Inorganic Structures. *Advanced Materials* 2024, 2406179. doi: 10.1002/adma.202406179.
- Scanning Electron Microscopy Imaging of Large DNA Molecules Using a Metal-Free Electro-Stain Composed of DNA-Binding Proteins and Synthetic Polymers. *Advanced Science*, 2024, 11 (28), 2309702. doi:10.1002/advs.202309702.
- Automatic Quantification of Living Cells via a Non-Invasive Achromatic Colorimetric Sensor Through Machine Learning Assisted Image Analysis Using a Smartphone. *Chemical Engineering Journal*, 2022, 450 (3), 138281. doi: 10.1016/j.cej.2022.138281.
- Multifunctional Heterogeneous Carbon Nanotube Nanocomposites Assembled by DNA Binding Peptide Anchors. *Small*, 2020, 16 (5), 1905821. doi: 10.1002/smll.201905821.
- Statistical Characterization of the Morphologies of Nanoparticles Through Machine Learning-Based Electron Microscopy Image Analysis. ACS Nano, 2020, 14 (12), 17125-17133. doi: 10.1021/acsnano.0c06809

Monolithic DNApatite: An Elastic Apatite with Sub-Nanometer Scale Organo–Inorganic Structures

Jung Heon Lee

School of Advanced Materials Science & Engineering, Sungkyunkwan University Suwon 16419, Korea.

Abstract

Hydroxyapatite (HA) exhibits outstanding biocompatibility, bioactivity, osteoconductivity, and natural anti-inflammatory properties. Pure HA, ion-doped HA, and HA-polymer composites are investigated, but critical limitations such as brittleness remain; numerous efforts are being made to address them. Herein, the novel self-crystallization of a polymeric single-stranded deoxyribonucleic acid (ssDNA) without additional phosphate ions for synthesizing deoxyribonucleic apatite (DNApatite) is presented. The synthesized DNApatite, DNA₁Ca_{2.2}(PO₄)_{1.3}OH_{2.1}, has a repetitive dual phase of inorganic HA crystals and amorphous organic ssDNA at the sub-nm scale, forming nanorods. Its mechanical properties, including toughness and elasticity, are significantly enhanced compared with those of HA nanorod, with a Young's modulus similar to that of natural bone.

 Monolithic DNApatite: An Elastic Apatite with Sub-Nanometer Scale Organo–Inorganic Structures. *Advanced Materials* 2024, 2406179. doi: 10.1002/adma.202406179